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Abstract

This paper describes the application and comparison of three Discrete Ordinates Methods: the Discrete Ordinates Interpolati
(DOIM) for structured and unstructured grids; the Discrete Ordinates Method in Orthogonal Curvilinear Coordinates (DOM-O
structured grid; and the Discrete Ordinates Method associated to the Finite Volume method and Ray Tracing (DOM-FV-RT) for uns
grid. A summary of the basic equations and numerical formulations is given for each method to outline their key characteristics. In
extract valuable information to improve DO kind methods when applied to complex geometries, they are compared in the case o
equilibrium of a gray medium confined between infinite black or diffusely reflecting circular or elliptical cylinders. For the circul
problem, the three DOMs results are confronted with Monte Carlo ones for various radius ratios and radiative properties. The ellip
problem extends the comparison to a more complex geometry and an emphasis is put on the evaluation of wall radiation fluxes. In c
distinctive features in terms of performances are observed for each method.
 2002 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

The Discrete Ordinates Method (DOM) is one of t
most widespread numerical tools devoted to the solutio
the Radiative Transfer Equation (RTE) in semi-transpa
media. Since the first work of Chandrasekhar [1], ma
variations of DOM have been implemented. The comm
feature of all these alternatives lies in the use of a se
discrete directions, for which the intensity field is solve
With their associated weights, the resulting mathema
tool—the so-called quadrature—allows the calculation
directionally integrated radiative variables like radiat
energy source terms and radiative hemispherical or
fluxes.

* Corresponding author.
E-mail addresses:vaillon@genserver.insa-lyon.fr (R. Vaillon),

thsong@kaist.ac.kr (T.-H. Song).
1290-0729/02/$ – see front matter 2002 Éditions scientifiques et médicales
doi:10.1016/S1290-0729(02)00036-4
The variants of DOM may be classified in connect
with:

– the form of the RTE to be solved: differential, integ
[2], and even parity/second order [3–7],

– the kind of coordinate systems (Cartesian [8–11], cy
drical [12–16], spherical [17], and curvilinear/body fi
ted [5,18,19]),

– the way the spatial integration of the RTE is perform
(Finite Difference, Finite Volume [20,21], Finite Ele
ment [3], direct integration along pathlengths [22,2
interpolations schemes [24–27], etc.),

– the choice of the directional quadrature set [28–33],
– the type of grid (structured and unstructured with tri

gles [22,23] or tetragons, parallelepipeds or tetrahed
[34]), and then the ability for the radiation solver to
coupled with other heat transfer or energy product
phenomena,
Elsevier SAS. All rights reserved.
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Nomenclature

G incident radiation. . . . . . . . . . . . . . . . . . . . W·m−2

I (total) radiative intensity. . . . . . . . . W·m−2·sr−1

Ib (total) blackbody radiative
intensity . . . . . . . . . . . . . . . . . . . . . . . W·m−2·sr−1

n̂ inward unit normal vector from a wall
Nϕ number of polar angles
Nψ number of azimuthal angles
q̇ radiative heat source per unit volume . . W·m−3

q ′′
w net radiative heat flux at a wall . . . . . . . . W·m−2

W angular quadrature weight
r coordinate in radial direction . . . . . . . . . . . . . . m
r∗ nondimensional distance across a cylinder
s, n curvilinear coordinates
x, y Cartesian coordinates
T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K

Greek symbols

β extinction coefficient . . . . . . . . . . . . . . . . . . . m−1

ε wall emissivity
µ,ξ, η direction cosines of a direction̂Ω

ϕ polar angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad
κ absorption coefficient . . . . . . . . . . . . . . . . . . . m−1

σ Stefan–Boltzmann constant . . . . . . W·m−2·K−4

σs scattering coefficient . . . . . . . . . . . . . . . . . . . m−1

τ optical depth
ω scattering albedo
ψ azimuthal angle . . . . . . . . . . . . . . . . . . . . . . . . . rad
Φ scattering phase function
Φ∗ nondimensional emissive power
Γ inverse of a radius of curvature . . . . . . . . . . m−1

Ω̂ radiation propagation direction vector
Ω solid angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . sr
Ψ ∗

1 nondimensional radiative net heat flux
at outer wall

Ψ ∗
2 nondimensional radiative incident heat flux

at a wall
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– the skill to treat diffusely or specularly reflecting [3
boundaries, and to include scattering for any sh
of phase function (isotropic and anisotropic [36,3
Lorenz–Mie [38], etc.),

– the appropriateness of the method with existing spe
radiation properties models.

The number of works about DOM is considerable, and
above reference list is not exhaustive. It should be not
that several references should have been cited several
in the above classification, but, for the sake of simplic
we have chosen the most representative feature of
article. Then it follows that criteria are too numerous to
able to extract an ideal method which could be applied
any kind of problem, and consume small computation t
while preserving accuracy. However, by focusing on pre
key characteristics, comparisons between various met
are likely to provide valuable information to improve t
method.

The objective of this article is to present three differ
implementations of DOM and to compare them in the c
of geometries with curved boundaries. A particular atten
will be paid to the way radiation fluxes are calculated, a
then to the precision of each procedure when reflecting w
have to be modelled.

Outlines of the methods are given in Section 2. T
first procedure, the Discrete Ordinates Interpolation Met
(DOIM) [6,39], is extended to cylindrical geometries. T
Interpolation Method is a scheme which can be app
to unstructured grids [40] as well as structured ones.
second method is an extension of the DOM to Ortho
s

nal Curvilinear Coordinates (DOM-OCC) [18,19], whic
involves a local directional frame and a conventional s
tial integration scheme in structured grids. The last DO
(DOM-FV-RT), associated to the Finite Volume Method
unstructured grid, incorporates directional ray propaga
relations (Ray Tracing) within the cells [22,23,34].

The test problems and results are detailed in Sectio
They have been chosen in order to focus on the treatme
geometries limited by curved walls. In particular, the wa
how the incident radiation fluxes on walls are calcula
are precisely compared. The first test considers the ra
tive equilibrium situation within infinite concentric circula
cylinders with isothermal black boundaries. Results are v
dated against the Monte Carlo calculations of Perlmutter
Howell [41] and discussed. The problem under considera
for the second test case is the radiative equilibrium betw
infinite isothermal elliptical cylinders. Performances of t
methods are compared and a particular attention is pai
the way incident radiation fluxes on walls are calculated

2. Formulations of methods

2.1. Discrete ordinates interpolation method (DOIM)

2.1.1. Mathematical formulation
The detailed formulation of the Discrete Ordinates In

polation Method can be found in the reference [6,39]. H
is given only a summary of the DOIM.

In the DOIM, the Radiative Transfer Equation (RT
is replaced by a set of equations for a finite number
ordinate directionŝΩi , i = 1,2, . . . ,M, and the scattering
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term integral is replaced by a quadrature of orderM with
appropriate angular weightsWi as:

1

β

dIi
dsi

= −Ii + Ṡi (1)

where:

Ṡi = (1−ω)Ib + ω

4π

M∑
k=1

IkΦ
(
Ω̂k, Ω̂i

)
Wk (2)

and whereIi is the intensity at a position̂r for a directionΩ̂i ;
β(= κ + σs) is the extinction coefficient;κ andσs are the
absorption and the scattering coefficients;ω is the scattering
albedo; andΦ(Ω̂k, Ω̂i) is the scattering phase function
intensity entering from̂Ωk and leaving toΩ̂i . The boundary
condition at a diffuse wall is given by:

Ii = εIbw + 1− ε
π

∑
n̂·Ω̂k<0

∣∣n̂ · Ω̂k
∣∣IkWk, n̂ · Ω̂i > 0 (3)

whereε is the wall emissivity,Ibw is the blackbody intensity
of the wall, andn̂ is the inward unit normal vector from
the wall. Eq. (1), together with the boundary condition (
constitutes a set ofM simultaneous, first order, linea
differential equations.

The local medium temperature may be obtained, whe
is not known, from the pointwise energy balance equa
iteratively as:

M∑
k=1

κIkWk − 4πκIb + q̇ = 0 (4)

where q̇ is the radiative strength of the heat source
volume unit. Also, the net radiative heat flux at a wall w
normal vector̂n can be found by:

q ′′
w =

M∑
k=1

(
n̂ · Ω̂k

)
IkWk (5)

2.1.2. Angular quadrature scheme
The ordinatêΩi and angular weightWi can be arbitrarily

obtained [42]. Among them, the Piecewise Constant Ang
(PCA) quadrature is employed in this study. Briggs et al. [
showed that this approximation could mitigate the ray effe
of the standardSN quadrature for the even-parity equation

In the PCA quadrature, the total solid angle is divid
uniformly in the polar (ϕ) and azimuthal (ψ) directions (see
Fig. 1). The numbers of divisions are denoted byNϕ andNψ ,
and the specific PCA quadrature is denoted byNϕ × Nψ .
From this we can express discrete polar and azimuthal an
as follows:

ϕn = (n− 1/2) ·∆ϕ, n= 1,2, . . . ,Nϕ(0 � ϕ � π)
ψm = (m− 1) ·∆ψ, m= 1,2, . . . ,Nψ(0 �ψ � 2π)

(6)

where∆ψ = 2π/Nψ and∆ϕ = π/Nϕ . For each discrete
ordinate, the corresponding weight is obtained as:
Fig. 1. A typical ordinate direction of the DOIM.

Wmn =
ψm+1/2∫
ψm−1/2

ϕn+1/2∫
ϕn−1/2

sinϕn dϕ dψ

= (ψm+1/2 −ψm−1/2)(cosϕn−1/2 − cosϕn+1/2) (7)

where:

ϕj+1/2 = (ϕj + ϕj+1)/2 (8a)

ψi+1/2 = (ψi +ψi+1)/2 (8b)

At boundary nodes, there can be solid angle overlaps [
and simple approximation is used for the DOIM here. T
is to say, if the mean direction of an overlapped solid an
is outgoing, all the rays in the solid angles is considere
be outgoing, and vice versa.

2.1.3. Discretization equation for the DOIM with
interpolation scheme

The DOIM is characterized by the employment of so
tion of the RTE along a line of sight from upstream node
the nearest node instead of taking an arbitrary relation
tween nodal intensities and control volume face intensit
i.e., spatial differencing scheme used in the DOM. In t
study both structured and unstructured (with triangular ce
grid systems are used for DOIM.

Consider a line of sight in direction̂Ω passing through a
nodal-pointP as shown in Fig. 2 (for simplicity, subscripti
for the ordinate is omitted hereafter). Eq. (1) is rewritten

dI

ds
+ βI = βṠ (9)

The source terṁS is approximated by the first two term
of a Taylor series expansion about pointP as follows:

Ṡ = Ṡ(s)= ṠP + dṠ

ds

∣∣∣∣
P

(s −∆s) (10)

Given the boundary valuesIIN , Eq. (9) can be exactl
solved forIP for constantβ , i.e.:
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IP = IINe−β∆s + ṠP
(
1− e−β∆s)

− 1

β

dṠ

ds

∣∣∣∣
P

[
1− e−β∆s(1+ β∆s)] (11)

whereIIN is a non-grid value interpolated with its neig
boring values ofI by a linear polynomial [6,40], which i
expressed as follows:

IIN =




∑1
n=0LnI (l − 1+ n,m− 1)
for structured grid system∑1
n=0LnIn+1
for unstructured grid system

(12)

(a)

(b)

Fig. 2. Grid notation for discretization equation of the DOIM (a) structu
grid and (b) unstructured grid.
wherel andm are grid indices in the figure,L0 = ∆l−δl
∆l

and
L1 = δl

∆l
. The gradientṠ in Eq. (10) can be obtained from

the following discretization equation:

dṠ

ds

∣∣∣∣
P

= ṠP − ṠIN
∆s

(13)

whereṠIN is interpolated in the same way asIIN .
Discretization equation forIP in terms of its neighboring

values ofI and Ṡ is obtained when Eqs. (12) and (13) a
introduced to Eq. (11), but the resulting equation is not gi
here owing to the limited space.

2.2. Discrete ordinates method in orthogonal curvilinear
coordinates (DOM-OCC)

An extension of the discrete ordinates method in orth
onal curvilinear coordinates has been performed by Vai
et al. for (s, n, z) [18] and (s, n, θ ) [19] coordinates systems
A detailed description of the technique is available in th
references. We present here a summary of the main fea
of the mathematical and numerical formulations, as wel
some improvements of the method.

2.2.1. Mathematical formulation
The radiation intensityI (P, Ω̂) at a pointP along a

direction Ω̂ depends on the three position coordinates
the pointP and two polar angles which define the directi
of propagation in space. Commonly, the same system
coordinates is used to specify both the position and
direction of propagation under consideration. This is the c
for DOIM (Section 2.1) and for DOM-FV-RT (Section 2.3
As for DOM-OCC, the geometry is defined in a fixed spa
orthogonal curvilinear coordinates system, whereas a l
moving directional frame is employed (Fig. 3) to specify t
direction of ray propagation.

As a consequence, the expression of the pathle
derivative of radiation intensity in the conservative form
the RTE contains additional angular redistribution term
accounting for variations of the polar angles (ϕ,ψ) with the
position coordinates (x1, x2, x3), when the direction unde

Fig. 3. Fixed spatial coordinates system and local (P ) directional frame for
the DOM-OCC.
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the
consideration is fixed in the local directional coordina
system. As an example, in the case of a two-dimensi
geometry described in orthogonal (s,n) spatial coordinates
the corresponding RTE can be expressed as:

sinϕ sinψ

1+ Γ n
∂I

∂s
+ cosϕ

1+ Γ n
∂(1+ Γ n)I

∂n

+ Γ

1+ Γ n
[

sin2ψ

sinϕ

∂ sin2ϕI

∂ϕ
+ cosϕ

∂ sinψ cosψI

∂ψ

]
= κ(Ib − I) (14)

whereΓ is the inverse of the radius of curvature of the li
on which the curvilinear coordinate (s) is defined.

Further details about the development of the RTE
various orthogonal curvilinear coordinates systems can
found in Refs. [18,19].

2.2.2. Discretized form of the RTE: Finite volume metho
and discrete ordinates

The medium described in the orthogonal curvilinear
ordinates system is discretized in a structured grid sys
The angular space is also discretized into discrete solid
gles∆Ωnm associated to discrete directions (ϕn,ψm). A Fi-
nite Volume procedure is employed and it consists of in
grating the RTE over each cell (∆Vijk =∆x1∆x2∆x3) and
over each finite solid angle (∆Ωnm). Angular integrals are
replaced by numerical quadratures which express ang
variables as functions of their values at the selected disc
directions.

The treatment of angular redistribution terms and
resulting discretized form of the RTE are not reported h
and can be found in Refs. [18,19].

2.2.3. Boundary conditions: Reflecting walls and symme
Thanks to the use of a local directional coordina

system, the calculation of radiation fluxes incident on w
and the handling of axis or plane symmetry conditions
be performed without any difficulty. Since tangent planes
walls always coincide with a coordinates plane of the lo
directional frame, there is no control solid angle overh
at boundaries and the selection of discrete ordinates fo
reckoning of incident fluxes is obvious. All the same, pla
or axis symmetry conditions can be treated easily bec
this plane (or axis) of symmetry generally correspond
a plane of coordinates (or to one of the axes) of the b
fitted coordinates system and the set of discrete direct
is chosen so that it respects the same symmetry cond
This particular feature can be used to reduce the sp
domain for the computation of solutions when symme
conditions may be extracted from the geometrical
physical configuration under consideration.

2.2.4. Numerical scheme
As in classical formulations of original Discrete Ord

nates Methods [12], the unknown intensities appearin
the discretized form of the RTE (values on cells and s
r

.

angles faces) are eliminated by using conventional in
polation schemes. Our previous experience on the pre
method demonstrated that a step scheme is recomme
for spatial differencing to ensure positive intensities wher
a diamond scheme is convenient for differencing the di
tional terms regardless of any stability consideration. Tha
to the use of a local directional coordinate system, the s
ning of medium is easily performed from cell to cell, pr
vided that the beginning mesh is properly selected.

The choice of a set of discrete directions and of the
sociated weights for the calculation of angular integra
values is crucial, particularly when reflecting wall boun
ary conditions are encountered. The objective is to red
the number of directions while preserving accuracy. For
DOM-OCC, the angular dependence is expressed as f
tions of the polar and azimuthal angles. As a conseque
among the existing quadratures, our choice is restricte
polar and azimuthal discretizations;Nϕ discrete polar angle
andNψ discrete azimuthal angles associated toNϕ × Nψ
non-overlapped discrete solid angles. In this work, the
cretization is uniform in the azimuthal direction. As for po
angles, our experience in DOM showed that a uniform d
sion in cosine of the polar angle produces better results
a uniform polar angle discretization. Finally, the selection
weights can be performed separately for the calculatio
incident radiation valuesG and net radiative heat flux at
wall with normal vector̂n:

G=
∫
4π

I
(
Ω̂

)
dΩ =

Nϕ∑
n=1

Nψ∑
m=1

WG,nmI (ϕn,ψm) (15)

q ′′
w =

∫
4π

(
n̂ · Ω̂)

I
(
Ω̂

)
dΩ =

Nϕ∑
n=1

Nψ∑
m=1

Wq ′′,nmI (ϕn,ψm) (16)

whereWG,nm andWq ′′
w,nm

are the weights used for evalu
tion ofG andq ′′

w, respectively.
For this work, we use a Piecewise Constant Angu

(PCA) approximation slightly modified by considering
uniform polar angle cosine discretization (∆µ= ∆(cosϕ))
instead of a uniform polar angle division (∆ϕ). Then the
polar angle associated to each∆µ interval is the inverse
cosine of the meanµ value of the∆µ interval. To calculate
any integral of angular functions, we use the equal weig
rule:

∫
4π

F
(
Ω̂

)
dΩ =

Nϕ∑
n=1

Nψ∑
m=1

WF(ϕn,ψm) (17)

whereW is simply given by 4π/(NϕNψ).
As a consequence, the weights employed to calculate

incident radiation (F = I ) is given by:

WG,nm = cst.=W = 4π

N N
(18)
ϕ ψ
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w,nm

, when net radiation fluxes along th
polar directionn̂ are sought (F = cosϕI), are:

Wq ′′
w,nm

=W cosϕn = 4π

NϕNψ
cosϕn (19)

Although moments rules do not give any absolute ins
ance of accuracy, it may be noted as an indication that
approaches verify zero order moment, first order total
half moments rules.

2.3. Discrete ordinates method associated to the finite
volume method and ray tracing (DOM-FV-RT)

2.3.1. Finite volume method
A first step consists in the generation of an unstructu

grid of triangular (in the two-dimensional case) or tetra
dral (in the three-dimensional case) meshes covering the
tem to be studied. The radiative transfer equation is then
tegrated on a mesh, and leads to, applying the Gauss’s
rem, in the two-dimensional case (for the three-dimensio
case, see [34]):

1

βSi

3∑
k=1

(
Ω̂ · n̂ik

)
likI
i
k

(
Ω̂

) + I i(Ω̂)

= (1−ω)I ib + ω

4π

∫
Ω ′=4π

Φ
(
Ω̂ ′ → Ω̂

)
I i

(
Ω̂ ′)dΩ ′ (20)

wheren̂ik is the external unit normal vector on lengthk of the
meshi, and the mean integrated surface and line intens
are defined as:

I i
(
Ω̂

) = 1

Si

∫
Si

I
(
s, Ω̂

)
dS and

I ik

(
Ω̂

) = 1

lik

∫
lik

I
(
s, Ω̂

)
dl

(21)

The integral term due to scattering in the RTE is appr
imated by a discrete sum, leading to:

I im − ω

4π

M∑
m′=1

Wm′Φm′mI
i
m′

= (1−ω)I ib − 1

βSi

3∑
k=1

ζ ikml
i
kI
i
km (22)

whereM is the number of propagation directions,ζ ikm =
Ω̂m · n̂ik andWm′ is the weight associated to the discre
direction Ω̂m′ . The discrete diffuse reflection bounda
conditions on the physical surfaces of the system are:

Iout(Ω̂m) = εIbw + 1− ε
π

∑
(n̂·Ω̂m′ )>0

Wm′
(
n̂ · Ω̂m′

)
I in(
Ω̂m′

)
for

(
n̂ · Ω̂m

)
< 0 (23)
-

-

whereIout(Ω̂m) is the intensity leaving the boundary surfa
for the discrete direction̂Ωm, I in(Ω̂m′) is the incoming
intensity on the boundary surface for the discrete direc
Ω̂m′ , n̂ is the unit external normal vector of the bounda
surface,ε is the emissivity of the wall andIbw is the
blackbody intensity of the wall.

The linear system to be solved to obtain the mean
face intensities is not closed because of the unknown
intensities on the boundaries of the cells: in the standard
crete ordinates method, the line intensities are interpol
to close the previous system. Such a procedure is accep
in structured square or rectangular meshes, but for triang
unstructured cells this is inappropriate. To avoid interpo
tions in triangular cells, a ray tracing algorithm is used
each discrete direction of propagation.

2.3.2. Ray tracing in triangular cells
The formal solution of the RTE along a bounded p

defined by its direction̂Ω is:

I
(
sf , Ω̂

)
= I(si , Ω̂)

e−βt + β
sf∫

s=si

[
(1−ω)Ib(s)

+ ω

4π

∫
Ω ′=4π

Φ
(
Ω̂ ′ → Ω̂

)
I
(
s, Ω̂ ′)dΩ ′

]

× e−β(sf−s) ds (24)

wheresi is the beginning of the path,sf is the end of the
path andt = sf − si is the path length. If one supposes t
intensity and the Planck function constant in a mesh,
previous equation leads to:

∀m ∈ {1, . . . ,M} I
sf
m = I sim e−βt + J im

(
1− e−βt) (25)

with:

J im = (1−ω)I ib + ω

4π

M∑
m′=1

Wm′Φm′mI
i
m′ (26)

in the previous equation,I
sf
m is the intensity on a length of

meshi from the intensityI sim on an other side of this mes
For instance, the mean intensity on side 1 of a triang
mesh is (Fig. 4):

I i1m = 1

li1

li1∫
p1=0

I1m(p1)dp1 (27)

The evaluation of the integral easily leads to [22,23]:

I i1m = I i2m
sinα1 sinγ2

sinα3 sinγ1

1− e−τ
τ

+ I i3m
sinα2 sinγ3

sinα3 sinγ1

1− e−τ
τ

+ J im
(

1− 1− e−τ )
(28)
τ
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Fig. 4. A triangular cell and the associated angular sectors defined fo
DOM-FV-RT.

where:

τ= βli2√
µ2 + ξ2

sinα2

sinγ1
= βli3√

µ2 + ξ2

sinα1

sinγ1
(29)

(µ, ξ, η) being the direction cosines of the propagat
directionΩ̂ .

To cover the whole directional quadrature, one must
five other angular sectors in the triangular mesh and esta
analogous equations to the previous one.

3. Application results and discussion

The three variations of the DOM are now applied
two-dimensional problems. In order to carefully analy
the results of the three DOMs, an absorbing, emitting
nonscattering medium is considered. Two problems
examined in this study. The first one deals with an infin
circular ring and the other one, with an infinite elliptic
ring. Both enclosures have diffuse and isothermal w
and in both problems, the medium is assumed to b
radiative equilibrium. In the remaining sections, all t
computational results for each method were taken when
solution accuracy hardly varied with increasing the num
of spatial and angular ordinates.

3.1. Circular ring problem

The schematic is shown in Fig. 5(a). The emissivities
the inner and outer walls are varied as 0.1, 0.3 and 1.
optical depthτ (≡ κ(r1 − r2)) is varied as 0.1, 2 and 10
The radius ratio(r2/r1) is varied as 0.01, 0.1 and 0.5. Th
nondimensional distance across the cylinders(r∗), emissive
power(Φ∗) and heat flux at outer wall(Φ∗

1) are defined as
follows:

r∗ = (r − r2)/(r1 − r2) (30)

Φ∗(r)= T
4(r)− T 4

1

T 4 − T 4 (31)

2 1
(a)

(b)

Fig. 5. Schematics of the two-dimensional (a) circular ring and (b) ellipt
ring.

Ψ ∗
1 = r1

r2

q ′′
w(r1)

σ (T 4
2 − T 4

1 )
(32)

Before presenting application results of the three DO
the numbers of spatial grids (or triangular cells for the DO
(unstructured) and DOM-FV-RT) and angular ordinates u
for each of them are mentioned first. They are given
Table 1. Since the DOIM and the DOM-FV-RT use Cartes
coordinates and angular ordinates fixed in space, they ca
use circumferential symmetry and they have to cons
the entire domain for their calculation. As the DOM-OC
uses a local directional coordinate system and an azimu
symmetry exists in this problem, some simplifications
the domain can be made with this method: the prob
is essentially one-dimensional in radial direction and
DOM-OCC calculates only a quarter of the entire circu
ring. As a result, the DOM-OCC considers a really sma
number of angular ordinates than the two other DOM
The DOM which generally employs the largest number
angular ordinates is the DOM-FV-RT; it uses aT5 angular
quadrature.
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Table 1
Numbers of spatial grids (or triangular cells) and angular ordinates taken for the entire circular ring

Test cases DOM-OCC* DOM-FV-RT DOIM (structured) DOIM (unstructured)

No. of No. of No. of No. of No. of No. of No. of No. of
spatial angular triangular angular spatial angular triangular angul
grids ordinates cells ordinates grids ordinates cells ordinat

ε1 = ε2 = 1,
τ = 2, r2/r1 = 0.5

1120 6 5000 100 7200 120 5128 120

ε1 = ε2 = 1,
τ = 2, r2/r1 = 0.1

1680 8 5000 100 3600 60 5280 60

ε1 = ε2 = 1,
τ = 2, r2/r1 = 0.01

5600 8 5000 100 14400 60 5230 60

ε1 = ε2 = 1,
τ = 10, r2/r1 = 0.1

1680 6 5000 100 7200 60 5280 60

ε1 = ε2 = 1,
τ = 0.1, r2/r1 = 0.1

1680 10 5000 100 7200 60 5280 60

ε1 = ε2 = 0.3,
τ = 2, r2/r1 = 0.1

5600 8 5000 100 900 60 5280 60

ε1 = ε2 = 0.1,
τ = 2, r2/r1 = 0.1

5600 8 5000 100 900 60 5280 240

* For the DOM-OCC, actual number of spatial grids taken in the calculation is a quarter of the value given in this table.

Table 2
Nondimensional outer wall heat fluxes by Monte Carlo and the three DOMs, and the three DOMs relative discrepancies with respect to Monte Carln
the circular ring problem

Test cases Monte DOM RD* of DOM-FV- RD* of DOIM- RD* of DOIM- RD* of
Carlo OCC DOM- RT DOM-FV- structured DOIM- unstructured DOIM-

method (standard OCC(%) (standard RT(%) (standard structured (standard unstruc
deviation) deviation) deviation) (%) deviation) (%)

ε1 = ε2 = 1, 0.98 1.07 9.18 0.985 0.51 1.14 16.33 1.06 0.82
τ = 0.1, r2/r1 = 0.1 (0) (0.033) (3.02E−3) (4.38E−2)

ε1 = ε2 = 1, 0.784 0.872 11.22 0.794 1.28 0.808 3.06 0.810 3.32
τ = 2, r2/r1 = 0.1 (0) (0.006) (2.19E−4) (8.06E−3)

ε1 = ε2 = 1, 0.382 0.442 15.71 0.387 1.31 0.347 −9.16 0.357 −6.54
τ = 10, r2/r1 = 0.1 (0) (0.013) (2.93E−4) (6.32E−4)

ε1 = ε2 = 1, 0.526 0.545 3.61 0.5368 2.05 0.505 −3.99 0.521 −0.95
τ = 2, r2/r1 = 0.5 (0) (0.0005) (1.54E−4) (5.79E−4)

ε1 = ε2 = 1, 1 1.2 20.00 0.955 −4.50 2.35 135 1.09 9.00
τ = 2, r2/r1 = 0.01 (0) (0.033) (0.46528) (0.050)

ε1 = ε2 = 0.3, 0.255 0.27 5.88 0.2537 −0.51 0.273 7.06 0.276 8.24
τ = 2, r2/r1 = 0.1 (0) (0.0012) (1.23E−3) (1.28E−3)

ε1 = ε2 = 0.1, 0.088 0.094 6.82 0.0894 1.59 0.0942 7.05 0.0961 9.20
τ = 2, r2/r1 = 0.1 (0) (0.0029) (4.83E−4) (1.70E−4)

* RD = Relative discrepancy with respect to Monte Carlo result.
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Nondimensional outer wall heat fluxΨ ∗′
1 s mean values

and associated standard deviations are given in Table 2.
to the use of a local directional coordinate system, stan
deviation of the DOM-OCC is zero, while those of the oth
DOMs are not zero. On the whole, the DOM-FV-RT a
DOIM (unstructured) have larger standard deviation val
than the DOIM (structured), but they are approximately l
than 4% of mean values even for the DOM-FV-RT a
DOIM (unstructured).

The relative discrepancies with respect to Monte Ca
results [41] are also tabulated in Table 2 and defined
follows:
Relative discrepancy ofΨ ∗
1 (%)

= Ψ
∗
1 |DOM −Ψ ∗

1 |Monte Carlo

Ψ ∗
1 |Monte Carlo

× 100 (33)

From Table 2, it is shown that the relative discrepanc
of the DOM-FV-RT are less than 5% for all the test ca
and are the smallest among the three DOMs results. A
the two other methods, the DOM-OCC overestimatesΨ ∗

1
and the DOIM overestimates or underestimates it depen
on the test cases. Their relative discrepancies vary glob
between 4 and 16% if the case with the smallest ratior2/r1
is put aside.
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Fig. 6. Nondimensional emissive power distribution of medium for vari
radius ratios in the circular ring problem.

The first cases consider black walled rings with a fix
optical depth(τ = 2) and a radius ratio varying as 0.0
0.1 and 0.5. The nondimensional emissive powersΦ∗
of those media are shown in Fig. 6. The results of
DOM-OCC, DOM-FV-RT and DOIM (unstructured) agre
well with Monte Carlo results regardless of radius rat
while a large difference atr2/r1 = 0.01 appears for the
DOIM (structured). Furthermore, for this case, the rela
discrepancy ofΨ ∗

1 is largest for all the three DOMs an
the DOIM (structured) and DOM-OCC results cannot
accepted as proper solutions. This is caused by the ray e
When radius ratio is small, the inner cylinder behaves lik
localized heat source. Therefore, enough numbers of sp
grids and angular ordinates need to be taken. However,
for this case, the DOM-FV-RT and to a lesser extent
DOIM (unstructured) show good results. In short, the DO
FV-RT and DOIM (unstructured) are less sensible to the
effect and unstructured grid system seems to have adva
over structured one for this kind of problems. With regard
Ψ ∗

1 , the errors of the DOM-OCC and DOIM (unstructure
decrease as radius ratio increases unlike the other DOM

For the second series of tests, the walls are black, th
dius ratior2/r1 is fixed at 0.1 and the optical depth is va
ied as 0.1, 2 and 10. Fig. 7 shows nondimensional e
sive powerΦ∗ of medium for these cases. The figure
veals that all the results obtained by the three DOMs
similar to Monte Carlo ones. However, a slight overestim
tion for τ = 0.1 and underestimation forτ = 10 can be ob-
served for the DOIM and DOM-FV RT, respectively. As f
wall heat fluxesΨ ∗

1 , the DOM-FV-RT gives the best resul
even forτ = 10. Although the DOM-FV-RT underestimat
emissive power in the middle of medium forτ = 10, there
is little discrepancy near outer wall(r∗ = 1). Therefore, it
can be expected that wall heat fluxΨ ∗

1 by the DOM-FV-RT
for this case is more reasonable than the emissive po
As optical depth increases, the relative discrepancies oΨ ∗
1

.

l

e

-

.

Fig. 7. Nondimensional emissive power distribution of medium for vari
optical depths in the circular ring problem.

Fig. 8. Nondimensional emissive power distribution of medium for vari
wall emissivities in the circular ring problem.

by the DOM-OCC, DOM-FV-RT and DOIM (unstructure
also increase but that by the DOIM (structured) does no

The last cases consider a fixed optical depth and ra
ratio (τ = 2 andr2/r1 = 0.1), and a varying wall emissivity
(0.1, 0.3 and 1). The case of diffusely reflecting walls w
make it possible to evaluate the influence of the accu
of wall flux calculation on the medium emissive pow
The nondimensional emissive power distribution is sho
in Fig. 8. The DOM-FV-RT results agree well with Mon
Carlo results, the DOM-OCC slightly overestimates, a
the DOIM overestimates more than the DOM-OCC. T
DOM-FV-RT gives the best wall heat fluxesΨ ∗

1 regardless
of wall emissivity. It is clear that the error in wall heat flux
of DOM-OCC and DOIM is reported on emissive pow
profiles when walls are non-black. However, it should
noticed that the relative discrepancy ofΨ ∗

1 by the DOM-
OCC for black walls is almost twice as large as those
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Table 3
Numbers of spatial grids (or triangular cells) and angular ordinates taken for the entire elliptical ring

Test cases DOM-OCC* DOM-FV-RT DOIM (structured) DOIM (unstructured)

No. of No. of No. of No. of No. of No. of No. of No. of
spatial angular triangular angular spatial angular triangular angul
grids ordinates cells ordinates grids ordinates cells ordinat

ε1 = ε2 = 1,
τ = 10

19200 64 5100 196 14400 60 7182 240

ε1 = ε2 = 1,
τ = 1

16000 48 5100 196 14400 120 7182 240

ε1 = ε2 = 1,
τ = 0.1

19200 128 5100 196 7200 120 7182 240

ε1 = ε2 = 0.3,
τ = 10

19200 64 5100 196 14400 120 7182 240

ε1 = ε2 = 0.3,
τ = 1

19200 48 5100 196 14400 120 7182 240

ε1 = ε2 = 0.3,
τ = 0.1

19200 128 5100 196 7200 120 7182 240

ε1 = 1, ε2 = 0.1,
τ = 10

19200 64 5100 196 14400 120 7182 240

ε1 = 1, ε2 = 0.1,
τ = 1

19200 48 5100 196 14400 120 7182 240

ε1 = 1, ε2 = 0.1,
τ = 0.1

19200 128 5100 196 3600 120 7182 240

* For the DOM-OCC, actual number of spatial grids taken in the calculation is a quarter of the value given in this table.
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non-black walls, whereas the DOIM gives better results
black walls than for non-black walls.

3.2. Elliptical ring problem

The schematic is shown in Fig. 5(b). The temperature
the inner and outer walls are 1000 K and 500 K, respectiv
The following three wall emissivity cases are consider
ε1 = 1, ε2 = 1; ε1 = 0.3, ε2 = 0.3; andε1 = 1, ε2 = 0.1.
In each case, the optical thicknessτ which is defined as
absorption coefficient multiplied by the difference betwe
lengths of semi-major axes, is varied as 0.1, 1 and 10. Ag
both enclosures have diffuse and isothermal walls and
medium is assumed to be at radiative equilibrium. In t
problem, nondimensional incident heat fluxes at inner
outer walls(Ψ ∗

2 ) are defined as follows:

Ψ ∗
2 =



q ′′

incident|outer wall

σT 4
1

at outer wall

q ′′
incident|inner wall

σT 4
2

at inner wall
(34)

It is obtained along the dimensionless curvilinear dista
along the wall (distance along the wall divided by t
perimeter of the ellipse, i.e.,s/smax in Fig. 5(b)). Nondi-
mensional emissive power along major or minor axis(Φ∗)
is defined as follows:

Φ∗ =



T 4(x, y = 0)− T 4

1

T 4
2 − T 4

1

along major axis

T 4(x= 0, y)− T 4
1

T 4 − T 4 along minor axis

(35)
2 1
As is done in the circular ring problem, numbers of spa
grids (or triangular cells for the DOIM (unstructured) a
DOM-FV-RT) and angular ordinates used for each tes
case are mentioned. They are given in Table 3. Unlike
circular ring problem, there is no circumferential symme
in this problem and a local azimuthal symmetry can
be further considered. Then the DOM-OCC uses la
numbers of spatial grids and azimuthal angles for
problem than for the circular ring one. With regard to angu
domain, the DOIM (unstructured) uses the largest numbe
angular ordinates and the DOM-FV-RT takes the 2nd lar
(T7 angular quadrature) while the DOM-OCC genera
takes the least. Like in the circular ring problem, the DO
OCC actually handles a quarter of the entire ellipti
ring using symmetry, while the DOIM and DOM-FV-R
consider the entire domain for their calculation. Therefo
the DOM-OCC generally needs the least computatio
efforts. The first cases consider black walls and opt
depthsτ varying as 0.1, 1 and 10. The nondimensio
emissive power distributionΦ∗ obtained with these medi
along major and minor axes are shown in Figs. 9–11. W
optical depthτ is 10 or especially 1, results of the thr
DOMs agree well with each other, and for all the tes
cases, emissive power along minor axis is always higher
that along major axis. It is because hot inner wall is less s
along major axis than along minor axis. The nondimensio
incident heat fluxes at wallsΨ ∗

2 are shown in Figs. 12–1
and they present some oscillations in the DOM-FV-RT a
DOIM results. It is due to the solid angle overhang
walls for the DOM-FV-RT and DOIM resulting from
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Fig. 9. Nondimensional emissive power distribution of medium
ε1 = ε2 = 1 andτ = 0.1 in the elliptical ring problem.

Fig. 10. Nondimensional emissive power distribution of medium
ε1 = ε2 = 1 andτ = 1 in the elliptical ring problem.

Fig. 11. Nondimensional emissive power distribution of medium
ε1 = ε2 = 1 andτ = 10 in the elliptical ring problem.
Fig. 12. Nondimensional incident heat flux at inner wall forε1 = ε2 = 1
andτ = 0.1 in the elliptical ring problem.

Fig. 13. Nondimensional incident heat flux at outer wall forε1 = ε2 = 1
andτ = 0.1 in the elliptical ring problem.

fixed angular ordinates set in space, while the DOM-O
using a local directional coordinate system can avoid
solid angle overhang at walls. Furthermore the DOIM, us
PCA quadrature, has less solid angle overhang effec
this elliptical ring problem than the DOM-FV-RT usingTN
quadrature. Especially for the DOIM (unstructured), a la
number of angular ordinates is used to reduce the solid a
overhang effect at walls. These solid angle overhang eff
can be observed in Figs. 12–17.

Generally, the three DOMs give similar results, ev
if some discrepancies can be observed, specially with
incident heat fluxes. If we take the DOM-OCC that has
oscillation as reference for incident heat fluxes, it is obser
from Figs. 12–17 that the DOIM overestimates at inner w
and underestimates at outer walls to keep overall en
balance in respect to the DOM-OCC. The DOM-FV-R
yields results which are similar to those of the DOM-OC
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Fig. 14. Nondimensional incident heat flux at inner wall forε1 = ε2 = 1
andτ = 1 in the elliptical ring problem.

Fig. 15. Nondimensional incident heat flux at outer wall forε1 = ε2 = 1
andτ = 1 in the elliptical ring problem.

Fig. 16. Nondimensional incident heat flux at inner wall forε1 = ε2 = 1
andτ = 10 in the elliptical ring problem.
Fig. 17. Nondimensional incident heat flux at outer wall forε1 = ε2 = 1
andτ = 10 in the elliptical ring problem.

Fig. 18. Nondimensional emissive power distribution of medium
ε1 = ε2 = 0.3 andτ = 0.1 in the elliptical ring problem.

for the inner walls (see Figs. 12, 14 and 16) and somew
different for the outer walls (see Figs. 13 and 15).

Let us considerτ = 1 case in detail. There is excelle
agreement between the three DOMs results for emis
power distribution from Fig. 10. Furthermore, the DOM
OCC and DOM-FV-RT results for incident heat fluxes
inner walls are similar to each other from Fig. 14. Howev
from Fig. 15, there is a discrepancy between the two res
at outer walls. This means that the two methods to ad
overall energy balance by the DOM-OCC and DOM-FV-
are different from each other in this case, and it seems
this difference may be ascribed to the DOM-FV-RT wh
has solid angle overhang at walls.

Second, consider the cases thatε1 = ε2 = 0.3 and an
optical depthτ is varied as 0.1, 1 and 10. Nondimensio
emissive power distributionsΦ∗ of medium along major an
minor axes are shown in Figs. 18–20. The results of the t
DOMs generally agree with each other especially forτ = 1
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Fig. 19. Nondimensional emissive power distribution of medium
ε1 = ε2 = 0.3 andτ = 1 in the elliptical ring problem.

Fig. 20. Nondimensional emissive power distribution of medium
ε1 = ε2 = 0.3 andτ = 10 in the elliptical ring problem.

except that the DOIM (unstructured) gives slightly high
values than the other DOMs. As is for black wall cas
values ofΦ∗ along minor axis are larger than those alo
major axis. Furthermore, from the figures, it can be verifi
that Φ∗ values for these reflective wall cases are sma
than those for black wall cases. Nondimensional incid
heat fluxesΦ∗

2 at walls are given in Figs. 21–26. They d
not show as good agreement as emissive power distribut
and some oscillations are observed in the DOM-FV-RT
DOIM (structured) results in these reflective wall cases
But they are similar within relative error of 10% with rega
to the DOM-OCC results.

Lastly, the cases thatε1 = 1,ε2 = 0.1 and an optical dept
τ is varied as 0.1, 1 and 10 are considered. The nondim
sional emissive power distributions along major and mi
axes are shown in Figs. 27–29. The best agreement is
served atτ = 1. At τ = 0.1, the DOM-OCC gives slightly
lower values than the other methods, while the DOM-FV-
shows that tendency atτ = 10. In these cases, the values
,

-

-

Fig. 21. Nondimensional incident heat flux at inner wall forε1 = ε2 = 0.3
andτ = 0.1 in the elliptical ring problem.

Fig. 22. Nondimensional incident heat flux at outer wall forε1 = ε2 = 0.3
andτ = 0.1 in the elliptical ring problem.

Fig. 23. Nondimensional incident heat flux at inner wall forε1 = ε2 = 0.3
andτ = 1 in the elliptical ring problem.
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Fig. 24. Nondimensional incident heat flux at outer wall forε1 = ε2 = 0.3
andτ = 1 in the elliptical ring problem.

Fig. 25. Nondimensional incident heat flux at inner wall forε1 = ε2 = 0.3
andτ = 10 in the elliptical ring problem.

Fig. 26. Nondimensional incident heat flux at outer wall forε1 = ε2 = 0.3
andτ = 10 in the elliptical ring problem.
Fig. 27. Nondimensional emissive power distribution of medium
ε1 = 1, ε2 = 0.1 andτ = 0.1 in the elliptical ring problem.

Fig. 28. Nondimensional emissive power distribution of medium
ε1 = 1, ε2 = 0.1 andτ = 1 in the elliptical ring problem.

Fig. 29. Nondimensional emissive power distribution of medium
ε1 = 1, ε2 = 0.1 andτ = 10 in the elliptical ring problem.
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Fig. 30. Nondimensional incident heat flux at inner wall forε1 = 1, ε2 = 0.1
andτ = 0.1 in the elliptical ring problem.

Fig. 31. Nondimensional incident heat flux at outer wall forε1 = 1, ε2 = 0.1
andτ = 0.1 in the elliptical ring problem.

Fig. 32. Nondimensional incident heat flux at inner wall forε1 = 1, ε2 = 0.1
andτ = 1 in the elliptical ring problem.
Fig. 33. Nondimensional incident heat flux at outer wall forε1 = 1, ε2 = 0.1
andτ = 1 in the elliptical ring problem.

Fig. 34. Nondimensional incident heat flux at inner wall forε1 = 1, ε2 = 0.1
andτ = 10 in the elliptical ring problem.

Fig. 35. Nondimensional incident heat flux at outer wall forε1 = 1, ε2 = 0.1
andτ = 10 in the elliptical ring problem.
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Φ∗ along minor axis are larger than those along major a
The inner wall is highly reflective in these cases and con
erable decrease inΦ∗ is observed from the figures compar
to black wall cases. Nondimensional incident heat fluxesΨ ∗

2
at walls are shown in Figs. 30–35. Oscillations are obse
in the DOM-FV-RT and DOIM (structured) results and th
are severe at highly reflective inner wall. As is for all oth
tested cases, incident heat fluxes at walls do not give as
agreement as emissive power distributions. However,
are similar within relative error of 10% with regard to t
DOM-OCC results except at inner wall withτ = 0.1.

4. Conclusion

Three variations of the DOM have been applied
the two-dimensional curved geometries. Results have b
carefully analysed to yield specific performances associ
to all methods or to some of them:

• the three methods give quite similar and accepta
results in terms of medium temperature (emissive po
distribution),

• it has been shown that for a localised heat source
circular cylinder test case with the smallest radius rat
the DOM-OCC and the DOIM (structured) are sensi
to the ray effect whereas the DOIM (unstructured) a
the DOM-FV-RT are much less. The use of unstructu
grids seems to have advantage over the use of struc
ones for this kind of situation,

• the DOM-OCC is able, even for a curved geometry
take advantage of spatial symmetries to reduce sp
and directional calculation domains. However, it
restricted to geometries which can be described
orthogonal curvilinear coordinates whereas the DO
and the DOM-FV-RT can be applied to any kind of 2
complex enclosure,

• for radiation fluxes at walls, the performances of
three DOMs are not identical both for the circular a
elliptical rings test cases. Since the DOM-FV-RT and
DOIM use Cartesian coordinates and angular ordin
fixed in space, there exist solid angle overhangs at w
when the boundaries are not parallel to a plane
coordinates. Therefore, they produce oscillations in w
radiation fluxes along boundaries, whereas the DO
OCC does not, thanks to the use of a local directio
coordinates system. In terms of absolute accuracy
DOM-FV-RT gives the best results compared to
other ones for the circular cylinder test cases. T
performances of the DOIM and the DOM-OCC depe
on the case under consideration. For the elliptical r
test, the three methods do not adjust overall ene
balance in the same way and then lead to different w
radiation flux values within 10% of relative error wi
regard to DOM-OCC (taken here as a reference bec
it avoids oscillations). The oscillations produced
d

the DOM-FV-RT and the DOIM are particularly seve
when the walls are highly reflecting.

It is expected that these conclusions should help
improving the DOM, one of the most promising Radiat
Transfer Equation solvers when they are applied to com
curved geometries. In particular, a proper attention shoul
paid to increase the accuracy of the methods for evalua
of wall radiation fluxes, in term of absolute values a
of regular variations along the boundaries (avoidance
oscillations) when the walls are not parallel to a plane
coordinates. As further work, tests might be extended
more complex geometries (for the DOIM and the DOM-F
RT; the DOM-OCC should be first extended to generali
curvilinear coordinates) and to the case of specular reflec
curved boundaries.
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