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Abstract

This paper describes the application and comparison of three Discrete Ordinates Methods: the Discrete Ordinates Interpolation Method
(DOIM) for structured and unstructured grids; the Discrete Ordinates Method in Orthogonal Curvilinear Coordinates (DOM-OCC) for
structured grid; and the Discrete Ordinates Method associated to the Finite Volume method and Ray Tracing (DOM-FV-RT) for unstructured
grid. A summary of the basic equations and numerical formulations is given for each method to outline their key characteristics. In order to
extract valuable information to improve DO kind methods when applied to complex geometries, they are compared in the case of radiative
equilibrium of a gray medium confined between infinite black or diffusely reflecting circular or elliptical cylinders. For the circular ring
problem, the three DOMs results are confronted with Monte Carlo ones for various radius ratios and radiative properties. The elliptical ring
problem extends the comparison to a more complex geometry and an emphasis is put on the evaluation of wall radiation fluxes. In conclusion,
distinctive features in terms of performances are observed for each method.
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1. Introduction The variants of DOM may be classified in connection
with:

The Discrete Ordinates Method (DOM) is one of the . o
most widespread numerical tools devoted to the solution of — the form of the RTE to be solved: differential, integral
the Radiative Transfer Equation (RTE) in semi-transparent  [2], and even parity/second order [3-7],
media. Since the first work of Chandrasekhar [1], many - the kind of coordinate systems (Cartesian [8-11], cylin-
variations of DOM have been implemented. The common  drical [12-16], spherical [17], and curvilinear/body fit-
feature of all these alternatives lies in the use of a set of  ted[5,18,19]),
discrete directions, for which the intensity field is solved. — the way the spatial integration of the RTE is performed
With their associated weights, the resulting mathematical (Finite Difference, Finite Volume [20,21], Finite Ele-
tool—the so-called quadrature—allows the calculation of ment [3], direct integration along pathlengths [22,23],

directionally integrated radiative variables like radiative interpolations schemes [24-27], etc.),
energy source terms and radiative hemispherical or net — the choice of the directional quadrature set [28-33],
fluxes. — the type of grid (structured and unstructured with trian-

gles[22,23] or tetragons, parallelepipeds or tetrahedrons
PN . [34]), and then the ability for the radiation solver to be
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Nomenclature

G incidentradiation.................... Wi—2 10 polarangle ............ ... i rad

I (total) radiative intensity. .. ...... Wh—2.sr 1 K absorption coefficient. . ................. -

Iy (total) blackbody radiative o Stefan—Boltzmann constant. . . ... W2 K4
intensity . ............cooeiei.... Wh—2.sr1 o scattering coefficient . .................. M

n inward unit normal vector from a wall T optical depth

Ny number of polar angles 1) scattering albedo

Ny number of azimuthal angles 4 azimuthalangle......................... rag

q radiative heat source per unit volume . . -3 o) scattering phase function

qu net radiative heat flux atawall. . ...... W2 P* nondimensional emissive power

w angular quadrature weight r inverse of a radius of curvature .......... mil

r coordinate in radial direction .............. m radiation propagation direction vector

re nondimensional distance across a cylinder Q solidangle.........oooveiiiiiiiii sr

s, n curvilinear coordinates 12 nondimensional radiative net heat flux

X,y Cartesian coordinates at outer wall

T temperature............ ..o i, K 12 nondimensional radiative incident heat flux

Greek symbols ata wall

B extinction coefficient................... Th Indices

e wall emissivity b blackbody

w,€,n direction cosines of a directio? w related to a wall

— the skill to treat diffusely or specularly reflecting [35] nal Curvilinear Coordinates (DOM-OCC) [18,19], which
boundaries, and to include scattering for any shape involves a local directional frame and a conventional spa-
of phase function (isotropic and anisotropic [36,37], tial integration scheme in structured grids. The last DOM

Lorenz—Mie [38], etc.), (DOM-FV-RT), associated to the Finite Volume Method in
— the appropriateness of the method with existing spectral unstructured grid, incorporates directional ray propagation
radiation properties models. relations (Ray Tracing) within the cells [22,23,34].

The test problems and results are detailed in Section 3.

The number of works about DOM is considerable, and the They have been chosen in order to focus on the treatment of
above reference list is not exhaustive. It should be noticed 9eometries limited by curved walls. In particular, the ways
that several references should have been cited several time§0W the incident radiation fluxes on walls are calculated

in the above classification, but, for the sake of simplicity, are precisely compared. The first test considers the radia-

we have chosen the most representative feature of eacHive equilibrium situation within infinite concentric circular
article. Then it follows that criteria are too numerous to be Ccvlinders with isothermal black boundaries. Results are vali-

dated against the Monte Carlo calculations of Perlmutter and
Howell [41] and discussed. The problem under consideration
for the second test case is the radiative equilibrium between
g’nfinite isothermal elliptical cylinders. Performances of the
methods are compared and a particular attention is paid on
the way incident radiation fluxes on walls are calculated.

able to extract an ideal method which could be applied to
any kind of problem, and consume small computation time
while preserving accuracy. However, by focusing on precise
key characteristics, comparisons between various method
are likely to provide valuable information to improve the
method.

The objective of this article is to present three different
implementations of DOM and to compare them in the case 5, . mulations of methods
of geometries with curved boundaries. A particular attention
will be paid to the way radiation fluxes are calculated, and 5 1 pjscrete ordinates interpolation method (DOIM)
then to the precision of each procedure when reflecting walls
have to be modelled. 2.1.1. Mathematical formulation

Outlines of the methods are given in Section 2. The  The detailed formulation of the Discrete Ordinates Inter-
first procedure, the Discrete Ordinates Interpolation Method polation Method can be found in the reference [6,39]. Here
(DOIM) [6,39], is extended to cylindrical geometries. The s given only a summary of the DOIM.
Interpolation Method is a scheme which can be applied In the DOIM, the Radiative Transfer Equation (RTE)
to unstructured grids [40] as well as structured ones. Theis replaced by a set of equations for a finite number of
second method is an extension of the DOM to Orthogo- ordinate directions2;, i = 1,2,..., M, and the scattering
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term integral is replaced by a quadrature of ordemwith
appropriate angular weightg; as:

tan s (1)
,3 ds,- - i i
where:
o M
Si=1— )+ E;m(m, 2/) Wi @)

and wherd; is the intensity at a positiahfor a direction?2;;
B(= k + oy) is the extinction coefficienty ando are the
absorption and the scattering coefficientss the scattering
albedo; and® (2, £2;) is the scattering phase function of
intensity entering fronf2; and leaving taf2;. The boundary
condition at a diffuse wall is given by:

1- R _
1,-=81bw+TgAZ i 2| We, A-2i>0 (3

whereg is the wall emissivity/y,, is the blackbody intensity
of the wall, andn is the inward unit normal vector from
the wall. Eq. (1), together with the boundary condition (3),
constitutes a set off simultaneous, first order, linear
differential equations.

The local medium temperature may be obtained, when it ¥j+1/2= (¢; + ¢j+1)/2

is not known, from the pointwise energy balance equation
iteratively as:

M
ZKIka —dnklp+4q=0
k=1

(4)

where ¢ is the radiative strength of the heat source per
volume unit. Also, the net radiative heat flux at a wall with
normal vector can be found by:

M

Gy = Z(ﬁ - 2) I Wi
k=1

()

2.1.2. Angular quadrature scheme
The ordinate?; and angular weigh; can be arbitrarily

345

z|

A

¢
)

<

X

Fig. 1. A typical ordinate direction of the DOIM.

Yim+1/2 Pn+1/2

Won = sing,, de dyr
Yim—1/2 Pn—1/2
= (Ym+1/2 — Ym—1/2)(COSPn—1/2 — COSPy1+1/2)  (7)
where:
(8a)
Vit2 = Wi + ¥iv1)/2 (8b)

Atboundary nodes, there can be solid angle overlaps[44],
and simple approximation is used for the DOIM here. That
is to say, if the mean direction of an overlapped solid angle
is outgoing, all the rays in the solid angles is considered to
be outgoing, and vice versa.

2.1.3. Discretization equation for the DOIM with
interpolation scheme

The DOIM is characterized by the employment of solu-
tion of the RTE along a line of sight from upstream node to
the nearest node instead of taking an arbitrary relation be-
tween nodal intensities and control volume face intensities,
i.e., spatial differencing scheme used in the DOM. In this

obtained [42]. Among them, the Piecewise Constant Angular Study both structured and unstructured (with triangular cells)

(PCA) quadrature is employed in this study. Briggs et al. [43]

showed that this approximation could mitigate the ray effects

of the standardy quadrature for the even-parity equations.
In the PCA quadrature, the total solid angle is divided

uniformly in the polar ) and azimuthal) directions (see

Fig. 1). The numbers of divisions are denoted\yyand Ny,

and the specific PCA quadrature is denotedNyy x Ny,.

grid systems are used for DOIM.

Consider a line of sight in directiof? passing through a
nodal-pointP as shown in Fig. 2 (for simplicity, subscript
for the ordinate is omitted hereafter). Eq. (1) is rewritten as:

I .
— +BI=48$

- ©)

From this we can express discrete polar and azimuthal angles  The source tern§ is approximated by the first two terms

as follows:
on=mn—-1/2)-Ap, n=12,...,N,(0<p <) ©)
sz(m_l)'Aw1 m:1127 Nlﬂ(0<w 277)

where Ay = 27 /Ny and Agp = w/N,. For each discrete
ordinate, the corresponding weight is obtained as:

of a Taylor series expansion about poihas follows:

—S+d$
- ds |p

Given the boundary valuegy, Eqg. (9) can be exactly
solved forlp for constants, i.e.:

S=25(s) (s — As) (10)
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Ip = I[NeiﬁAS—‘rSP(l—eiﬂAs)

1dS
— | [1—e P+ pa 11
ﬁdsp[ e (14 BAs)] (11)
where I}y is a non-grid value interpolated with its neigh-
boring values ofl by a linear polynomial [6,40], which is
expressed as follows:

S Ll —14n,m—1)
for structured grid system

Z}l=0 Ln In+l
for unstructured grid system

Iy = (12)

m+1

@)

(b)

Fig. 2. Grid notation for discretization equation of the DOIM (a) structured Fig. 3. Fixed spatial coordinates system and lo#jl directional frame for

grid and (b) unstructured grid.

wherel andm are grid indices in the figurd,o = 2% and

L1 =L, The gradientS in Eq. (10) can be obtained from
the following discretization equation:
S| _ $p S

ds | p T As

(13)

whereS$; y is interpolated in the same way &gy .
Discretization equation fofp in terms of its neighboring
values of/ and $ is obtained when Egs. (12) and (13) are
introduced to Eq. (11), but the resulting equation is not given

here owing to the limited space.

2.2. Discrete ordinates method in orthogonal curvilinear
coordinates (DOM-OCC)

An extension of the discrete ordinates method in orthog-
onal curvilinear coordinates has been performed by Vaillon
etal. for s, n, z) [18] and §, , 6) [19] coordinates systems.

A detailed description of the technique is available in these
references. We present here a summary of the main features
of the mathematical and numerical formulations, as well as
some improvements of the method.

2.2.1. Mathematical formulation

The radiation intensity/ (P, 2) at a point P along a
direction 2 depends on the three position coordinates of
the pointP and two polar angles which define the direction
of propagation in space. Commonly, the same system of
coordinates is used to specify both the position and the
direction of propagation under consideration. This is the case
for DOIM (Section 2.1) and for DOM-FV-RT (Section 2.3).
As for DOM-OCC, the geometry is defined in a fixed spatial
orthogonal curvilinear coordinates system, whereas a local
moving directional frame is employed (Fig. 3) to specify the
direction of ray propagation.

As a consequence, the expression of the pathlength
derivative of radiation intensity in the conservative form of
the RTE contains additional angular redistribution terms,
accounting for variations of the polar anglgs (/) with the
position coordinatesxg, x2, x3), when the direction under

the DOM-OCC.
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consideration is fixed in the local directional coordinates angles faces) are eliminated by using conventional inter-
system. As an example, in the case of a two-dimensional polation schemes. Our previous experience on the present
geometry described in orthogonalif) spatial coordinates, = method demonstrated that a step scheme is recommended
the corresponding RTE can be expressed as: for spatial differencing to ensure positive intensities whereas
a diamond scheme is convenient for differencing the direc-
tional terms regardless of any stability consideration. Thanks
to the use of a local directional coordinate system, the scan-

singsiny a1 cosp d(1+TI'n)l
1+I'n 0s 1+4+1In on

I [Sinziﬂ dsirf gl n co&pasmw COSI/II} ning of medium is easily performed from cell to cell, pro-
1+ TI'n| sing ¢ oy vided that the beginning mesh is properly selected.
=x(Ip—1) (14) The choice of a set of discrete directions and of the as-

sociated weights for the calculation of angular integrated
values is crucial, particularly when reflecting wall bound-
ary conditions are encountered. The objective is to reduce
the number of directions while preserving accuracy. For the
DOM-OCC, the angular dependence is expressed as func-
tions of the polar and azimuthal angles. As a consequence,
among the existing quadratures, our choice is restricted to
polar and azimuthal discretizatiorn'$, discrete polar angles
and Ny, discrete azimuthal angles associatedVip x Ny,
non-overlapped discrete solid angles. In this work, the dis-
cretization is uniform in the azimuthal direction. As for polar
angles, our experience in DOM showed that a uniform divi-
sion in cosine of the polar angle produces better results than
a uniform polar angle discretization. Finally, the selection of

. . . weights can be performed separately for the calculation of
over each finite solid angleAs2,,,). Angular integrals are . . e e
gleAs2,). Ang 9 Jncident radiation value& and net radiative heat flux at a

replaced by numerical quadratures which express angula Il with | vectoli:
variables as functions of their values at the selected discreteV®" With NOrmaivecton.

where! is the inverse of the radius of curvature of the line
on which the curvilinear coordinate)(is defined.

Further details about the development of the RTE in
various orthogonal curvilinear coordinates systems can be
found in Refs. [18,19].

2.2.2. Discretized form of the RTE: Finite volume method
and discrete ordinates

The medium described in the orthogonal curvilinear co-
ordinates system is discretized in a structured grid system.
The angular space is also discretized into discrete solid an-
glesA$2,,, associated to discrete directions (). A Fi-
nite Volume procedure is employed and it consists of inte-
grating the RTE over each cel\(;;x = Ax1Ax2Ax3) and

directions. Ny Ny

The treatment of angular redistribution terms and the , 5 _
resulting discretized form of the RTE are not reported here G= / I{2)ds2 = Zl X_:lWG’"’"I((p”’ Ym) (15)
and can be found in Refs. [18,19]. 4r =

Ny Ny

2.2.3. Boundary conditions: Reflecting walls and symmetry ¢/ = /(fz R)1(2)dR2 =" Woruml (@n. Yin) (16)

Thanks to the use of a local directional coordinates
system, the calculation of radiation fluxes incident on walls
and the handling of axis or plane symmetry conditions can whereWg ., and W, ., are the weights used for evalua-
be performed without any difficulty. Since tangent planes of tion of G andq,;, respectively.
walls always coincide with a coordinates plane of the local ~ For this work, we use a Piecewise Constant Angular
directional frame, there is no control solid angle overhang (PCA) approximation slightly modified by considering a
at boundaries and the selection of discrete ordinates for theuniform polar angle cosine discretizatiod g = A(cosy))
reckoning of incident fluxes is obvious. All the same, plane instead of a uniform polar angle divisiom{). Then the
or axis symmetry conditions can be treated easily becausepolar angle associated to eaetu interval is the inverse
this plane (or axis) of symmetry generally corresponds to cosine of the meap value of theAu interval. To calculate
a plane of coordinates (or to one of the axes) of the body any integral of angular functions, we use the equal weights
fitted coordinates system and the set of discrete directionsrule:
is chosen so that it respects the same symmetry condition.

- n=1m=1

Ny, N,
This particular feature can be used to reduce the spatial ~ Y
domain for the computation of solutions when symmetry F($2)de2 = Z Z WE(@n, Ym) (17)
conditions may be extracted from the geometrical and 4~ n=1m=1

physical configuration under consideration. whereW is simply given by 4/(N,Ny).

As a consequence, the weights employed to calculate the

2.2.4. Numerical scheme incident radiation £ = I) is given by:

As in classical formulations of original Discrete Ordi-
nates Methods [12], the unknown intensities appearing in A
the discretized form of the RTE (values on cells and solid WG.nm =cst.=W = NyNy

(18)
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and the weights$V,. ., when net radiation fluxes along the
polar directiom are sought§¥ = cospl), are:

4
anwnm - WCOS(p,, = N—

19
Ny (19)

COSpy,

H.-M. Koo et al. / International Journal of Thermal Sciences 42 (2003) 343-359

where/°U(2,,) is the intensity leaving the boundary surface
for the discrete direction2,,, IM(£2,,) is the incoming
intensity on the boundary surface for the discrete direction
Q,v, it is the unit external normal vector of the boundary
surface,¢ is the emissivity of the wall and;, is the

Although moments rules do not give any absolute insur- blackbody intensity of the wall.
ance of accuracy, it may be noted as an indication that both ~ The linear system to be solved to obtain the mean sur-
approaches verify zero order moment, first order total and face intensities is not closed because of the unknown line

half moments rules.

2.3. Discrete ordinates method associated to the finite
volume method and ray tracing (DOM-FV-RT)

2.3.1. Finite volume method

intensities on the boundaries of the cells: in the standard dis-
crete ordinates method, the line intensities are interpolated
to close the previous system. Such a procedure is acceptable
in structured square or rectangular meshes, but for triangular
unstructured cells this is inappropriate. To avoid interpola-
tions in triangular cells, a ray tracing algorithm is used for

A first step consists in the generation of an unstructured €ach discrete direction of propagation.

grid of triangular (in the two-dimensional case) or tetrahe-

dral (in the three-dimensional case) meshes covering the sys*

tem to be studied. The radiative transfer equation is then in-

2.3.2. Ray tracing in triangular cells
The formal solution of the RTE along a bounded path

tegrated on a mesh, and leads to, applying the Gauss's theod€fined by its direction? is:
rem, in the two-dimensional case (for the three-dimensional I(sy, _Q)

case, see [34]):

3

s L AL@) +1'(2)

==+ 4 / ®(2 — Q)1 (@) d2’ (20)
2'=4n

whereit;, is the external unit normal vector on lengtof the

meshi, and the mean integrated surface and line intensities

are defined as:

r@)= / I(s.8)ds and

Si

1/ (s. Q) d

lk
ll

_ (21)
1(2)=

The integral term due to scattering in the RTE is approx-
imated by a discrete sum, leading to:

M
w i
- — E Wm/CDm/mIm/
T
m'=1

3
. 1 S
=A-o)l - 25 D Conli i (22)
k=1
whereM is the number of propagation directior‘g;m

Q- 1} and W, is the weight associated to the discrete
direction £2,,. The discrete diffuse reflection boundary
conditions on the physical surfaces of the system are:

l1-¢ Z Wm/(ﬁo

(7-2,)>0

IOUt(ﬁm) =elpy +

§m/)1in (Qm/)

for (- 2,) <0 (23)

Sf
= I(5, 2)e P + B / |:(1—60)Ib(5)

S=s;

[ e@=ayea) dQ’}
Q'=4r
x e BEr=9) ds

w

T

(24)

wheres; is the beginning of the pathy, is the end of the
path andr = sy — s; is the path length. If one supposes the
intensity and the Planck function constant in a mesh, the
previous equation leads to:

Vmel(l,....M} L/ =1Iie P +Ji(1-eP) (25)
with:

m'=1

in the previous equatior,’ is the intensity on a length of a
meshi from the intensityl,’ on an other side of this mesh.
For instance, the mean intensity on side 1 of a triangular

mesh is (Fig. 4):
iy
i _ 1 d
I, = m I1, (p1) dp1
1
p1=0
The evaluation of the integral easily leads to [22,23]:

(27)

; Sinagsinyz 1—e™*
2m

Im = sinagsinys T

. . e
; Sinazsinyzl—e

e sinas siny1 T

. 1—e 7
+J,;(1— ¢

)

(28)
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y

r2
I.1
wall 2:T; ¢,
v, @
Fig. 4. A triangular cell and the associated angular sectors defined for the y
DOM-FV-RT. F
y (m)
where: 2 s

Wall 1: Ty, &

Bl sinaz Bls  sinag (29)
T= n == A
/2 + £2 SIiNyy /2 + £2 siny1 1
(n,§,7m) being the direction cosines of the propagation /\ Smax
directions2. 3 3 >( )
To cover the whole directional quadrature, one must add K‘/ xm
five other angular sectors in the triangular mesh and establish

analogous equations to the previous one.

3. Application results and discussion Wall 2: Ty, &

The three variations of the DOM are now applied to
two-dimensional problems. In order to carefully analyze (b)
the results of the three DOMs, an absorbing, emitting and Fig. 5. Schematics of the two-dimensional (a) circular ring and (b) elliptical
nonscattering medium is considered. Two problems are ying.
examined in this study. The first one deals with an infinite
circular ring and the other one, with an infinite elliptical « 1 q,(r)
ring. Both enclosures have diffuse and isothermal walls ~1 — r_ZU(T24_ )

and in both problems, the medium is assumed to be at , L
radiative equilibrium. In the remaining sections, all the Before presenting application results of the three DOMs,

computational results for each method were taken when thet€ numbers of spatial grids (or triangular cells for the DOIM
solution accuracy hardly varied with increasing the number (Unstructured) and DOM-FV-RT) and angular ordinates used
of spatial and angular ordinates. for each pf them are mentioned first. They are given in
Table 1. Since the DOIM and the DOM-FV-RT use Cartesian
3.1. Circular ring problem coordinates and angular ordinates fixed in space, they cannot
use circumferential symmetry and they have to consider
The schematic is shown in Fig. 5(a). The emissivities of the entire domain for their calculation. As the DOM-OCC
the inner and outer walls are varied as 0.1, 0.3 and 1. Theuses a local directional coordinate system and an azimuthal
optical deptht(= k (r1 — r2)) is varied as 0.1, 2 and 10. Symmetry exists in this problem, some simplifications of
The radius ratiar2/r1) is varied as 0.01, 0.1 and 0.5. The the domain can be made with this method: the problem
nondimensional distance across the cylindet$, emissive is essentially one-dimensional in radial direction and the
power (®*) and heat flux at outer walkp;) are defined as DOM-OCC calculates only a quarter of the entire circular

(32)

follows: ring. As a result, the DOM-OCC considers a really smaller
. number of angular ordinates than the two other DOMs.
r=(r—r2)/(r1—r2) (30) The DOM which generally employs the largest number of
D5 () = T4(r) — T} (31) angular ordinates is the DOM-FV-RT; it usesT@ angular

-1} quadrature.
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Table 1
Numbers of spatial grids (or triangular cells) and angular ordinates taken for the entire circular ring
Test cases DOM-OCC DOM-FV-RT DOIM (structured) DOIM (unstructured)
No. of No. of No. of No. of No. of No. of No. of No. of
spatial angular triangular angular spatial angular triangular angular
grids ordinates cells ordinates grids ordinates cells ordinates
f1=e2=1, 1120 6 5000 100 7200 120 5128 120
t=2,rp/r1 =05
e1=¢2=1 1680 8 5000 100 3600 60 5280 60
t=2,rp/r1=0.1
e1=¢2=1,
t =2 ro/r =001 5600 8 5000 100 14400 60 5230 60
e1=¢ep=1,
£ =10.ry/ry = 0.1 1680 6 5000 100 7200 60 5280 60
e1=e2=1,
£ =01, ry/r1 =01 1680 10 5000 100 7200 60 5280 60
e1=62=03 5600 8 5000 100 900 60 5280 60
t=2,rp/r1=0.1
e1=62=01 5600 8 5000 100 900 60 5280 240

t=2,rp/r1=0.1

* For the DOM-OCC, actual number of spatial grids taken in the calculation is a quarter of the value given in this table.

Table 2
Nondimensional outer wall heat fluxes by Monte Carlo and the three DOMSs, and the three DOMs relative discrepancies with respect to Monte Carlo results i
the circular ring problem

Test cases Monte DOM RD* of DOM-FV- RD* of DOIM- RD* of DOIM- RD* of
Carlo OoCC DOM- RT DOM-FV- structured DOIM- unstructured DOIM-
method (standard OCC(%) (standard RT (%) (standard structured (standard unstructured
deviation) deviation) deviation) (%) deviation) (%)
e1=¢6=1, 098 107 918 0985 051 114 1633 106 082
t=01,r/r1=0.1 0) (0.033 (3.02E-3) (4.38E-2)
e1=¢ep=1, 0784 0872 1122 0794 128 0808 306 0810 332
t=2,rp/r1=0.1 0) (0.006) (2.19E-4) (8.06E-3)
g1 =¢ep=1, 0.382 Q442 1571 0387 131 0347 —9.16 0357 —6.54
t=10,rp/r1 =0.1 0) (0.013 (2.93E-4) (6.32E-4)
e1=¢er=1, 0526 0545 361 05368 205 0505 —-3.99 0521 —0.95
t=2,r2/r1 =05 () (0.0005 (1.54E-4) (5.79E-4)
g1=¢ex=1, 1 12 2000 0955 —4.50 235 135 109 900
t=2,rp/ry =001 0) (0.033 (0.46528 (0.050
g1 =¢2=0.3, 0.255 Q27 588 02537 -0.51 0273 706 0276 824
t=2,rp/r1=0.1 0) (0.0012 (1.23E-3) (1.28E-3)
g1 =¢62=0.1, 0.088 Q094 682 00894 159 00942 705 00961 920
t=2rp/r1=0.1 0) (0.0029 (4.83E-4) (1.70E-4)

* RD = Relative discrepancy with respect to Monte Carlo result.

Nondimensional outer wall heat fluk;”s mean values  Relative discrepancy a; (%)
and associated standgrd d_ewatlons are given in Table 2. Due W |pom — %5 [Monte Carlo
to the use of a local directional coordinate system, standard = o7 x 100 (33)
deviation of the DOM-OCC is zero, while those of the other 1 [Monte Carlo
DOMs are not zero. On the whole, the DOM-FV-RT and From Table 2, it is shown that the relative discrepancies
DOIM (unstructured) have larger standard deviation values of the DOM-FV-RT are less than 5% for all the test cases
than the DOIM (structured), but they are approximately less and are the smallest among the three DOMSs results. As for
than 4% of mean values even for the DOM-FV-RT and the two other methods, the DOM-OCC overestimatg's
DOIM (unstructured). and the DOIM overestimates or underestimates it depending
The relative discrepancies with respect to Monte Carlo on the test cases. Their relative discrepancies vary globally
results [41] are also tabulated in Table 2 and defined asbetween 4 and 16% if the case with the smallest ratioy
follows: is put aside.
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Fig. 6. Nondimensional emissive power distribution of medium for various
radius ratios in the circular ring problem.

The first cases consider black walled rings with a fixed
optical depth(z = 2) and a radius ratio varying as 0.01,
0.1 and 0.5. The nondimensional emissive powérs
of those media are shown in Fig. 6. The results of the
DOM-0OCC, DOM-FV-RT and DOIM (unstructured) agree
well with Monte Carlo results regardless of radius ratios
while a large difference aty/r1 = 0.01 appears for the
DOIM (structured). Furthermore, for this case, the relative
discrepancy of¢f" is largest for all the three DOMs and
the DOIM (structured) and DOM-OCC results cannot be

accepted as proper solutions. This is caused by the ray effect.
When radius ratio is small, the inner cylinder behaves like a

localized heat source. Therefore, enough numbers of spatial
grids and angular ordinates need to be taken. However, even

for this case, the DOM-FV-RT and to a lesser extent the
DOIM (unstructured) show good results. In short, the DOM-

351
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Fig. 7. Nondimensional emissive power distribution of medium for various
optical depths in the circular ring problem.
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Fig. 8. Nondimensional emissive power distribution of medium for various

FV-RT and DOIM (unstructured) are less sensible to the ray . emissivities in the circular ring problem.
effect and unstructured grid system seems to have advantage

over structured one for this kind of problems. With regard to
v, the errors of the DOM-OCC and DOIM (unstructured)
decrease as radius ratio increases unlike the other DOMs.

For the second series of tests, the walls are black, the ra-

dius ratiory/r1 is fixed at 0.1 and the optical depth is var-

ied as 0.1, 2 and 10. Fig. 7 shows nondimensional emis-

sive power®* of medium for these cases. The figure re-

by the DOM-OCC, DOM-FV-RT and DOIM (unstructured)
also increase but that by the DOIM (structured) does not.
The last cases consider a fixed optical depth and radius
ratio (t =2 andrz/r1 = 0.1), and a varying wall emissivity
(0.1, 0.3 and 1). The case of diffusely reflecting walls will
make it possible to evaluate the influence of the accuracy

veals that all the results obtained by the three DOMs are of wall flux calculation on the medium emissive power.

similar to Monte Carlo ones. However, a slight overestima-
tion for r = 0.1 and underestimation far= 10 can be ob-
served for the DOIM and DOM-FV RT, respectively. As for
wall heat fluxes?;", the DOM-FV-RT gives the best results
even fort = 10. Although the DOM-FV-RT underestimates
emissive power in the middle of medium for= 10, there

is little discrepancy near outer walt* = 1). Therefore, it
can be expected that wall heat flux' by the DOM-FV-RT

The nondimensional emissive power distribution is shown
in Fig. 8. The DOM-FV-RT results agree well with Monte

Carlo results, the DOM-OCC slightly overestimates, and
the DOIM overestimates more than the DOM-OCC. The
DOM-FV-RT gives the best wall heat flux@s* regardless

of wall emissivity. It is clear that the error in wall heat fluxes
of DOM-OCC and DOIM is reported on emissive power
profiles when walls are non-black. However, it should be

for this case is more reasonable than the emissive power.noticed that the relative discrepancy @f by the DOM-

As optical depth increases, the relative discrepancies of

OCC for black walls is almost twice as large as those for
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Table 3
Numbers of spatial grids (or triangular cells) and angular ordinates taken for the entire elliptical ring
Test cases DOM-OCC DOM-FV-RT DOIM (structured) DOIM (unstructured)
No. of No. of No. of No. of No. of No. of No. of No. of
spatial angular triangular angular spatial angular triangular angular
grids ordinates cells ordinates grids ordinates cells ordinates
TRy o 19200 64 5100 196 14400 60 7182 240
Y ! 16000 48 5100 196 14400 120 7182 240
1 r:_g"‘ozl o 19200 128 5100 196 7200 120 7182 240
T TOOB' 19200 64 5100 196 14400 120 7182 240
1 ::?2_ 1 03, 19200 48 5100 196 14400 120 7182 240
Y 10'3' 19200 128 5100 196 7200 120 7182 240
e1=1¢6=0.1,
=10 19200 64 5100 196 14400 120 7182 240
e1=1¢e=0.1,
=1 19200 48 5100 196 14400 120 7182 240
e1=1¢6=0.1,
=01 19200 128 5100 196 3600 120 7182 240

* For the DOM-OCC, actual number of spatial grids taken in the calculation is a quarter of the value given in this table.

non-black walls, whereas the DOIM gives better results for ~ Asis doneinthe circular ring problem, numbers of spatial
black walls than for non-black walls. grids (or triangular cells for the DOIM (unstructured) and

DOM-FV-RT) and angular ordinates used for each tested
case are mentioned. They are given in Table 3. Unlike the

The schematic is shown in Fig. 5(b). The temperatures of F:ircu!ar ring problem, there is no_circumferential symmetry
the inner and outer walls are 1000 K and 500 K, respectively, N this problem and a local azimuthal symmetry cannot
The following three wall emissivity cases are considered: P& further considered. Then the DOM-OCC uses larger
e1=1¢6=1 ¢, =03, 6,=03; andey = 1, ¢p = 0.1. numbers of spatial grids and azimuthal angles for this
In each case, the optical thicknesswhich is defined as problem than for the circular ring one. With regard to angular
absorption coefficient multiplied by the difference between domain, the DOIM (unstructured) uses the largest number of
lengths of semi-major axes, is varied as 0.1, 1 and 10. Again,@ngular ordinates and the DOM-FV-RT takes the 2nd largest
both enclosures have diffuse and isothermal walls and the(77 angular quadrature) while the DOM-OCC generally
medium is assumed to be at radiative equilibrium. In this takes the least. Like in the circular ring problem, the DOM-
problem, nondimensional incident heat fluxes at inner and OCC actually handles a quarter of the entire elliptical

3.2. Elliptical ring problem

outer walls(¥3) are defined as follows: ring using symmetry, while the DOIM and DOM-FV-RT
. consider the entire domain for their calculation. Therefore,
Gincidentouter wal at outer wall the DOM-OCC generally needs the least computational
wi=1{ , o Ty (34) efforts. The first cases consider black walls and optical
Jincidentinner wall atinner wall depthsz varying as 0.1, 1 and 10. The nondimensional

0'T24 emissive power distributio®* obtained with these media

along major and minor axes are shown in Figs. 9-11. When
optical deptht is 10 or especially 1, results of the three
DOMs agree well with each other, and for all the tested
cases, emissive power along minor axis is always higher than
that along major axis. It is because hotinner wall is less seen
along major axis than along minor axis. The nondimensional
along major axis incident heat fluxes at wallg; are shown in Figs. 12-17
(35) and they present some oscillations in the DOM-FV-RT and
DOIM results. It is due to the solid angle overhang at
walls for the DOM-FV-RT and DOIM resulting from a

It is obtained along the dimensionless curvilinear distance
along the wall (distance along the wall divided by the
perimeter of the ellipse, i.es,/smax in Fig. 5(b)). Nondi-
mensional emissive power along major or minor axs’)
is defined as follows:
T4x,y=0) -1}
ry - Tf
T4x=0,y) - T}
4 4
Iy =1y

* =

along minor axis
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Fig. 9. Nondimensional emissive power distribution of medium for

g1 =¢2 =1 andr = 0.1 in the elliptical ring problem.
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Fig. 10. Nondimensional emissive power distribution of medium for

g1 = &2 =1 andr =1 in the elliptical ring problem.
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Fig. 11. Nondimensional emissive power distribution of medium for

&1 =¢&2 =1 andr =10 in the elliptical ring problem.
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Fig. 12. Nondimensional incident heat flux at inner wall fgr= e =1
andt = 0.1 in the elliptical ring problem.
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Fig. 13. Nondimensional incident heat flux at outer wall fgr=e> = 1
andr = 0.1 in the elliptical ring problem.

fixed angular ordinates set in space, while the DOM-OCC
using a local directional coordinate system can avoid the
solid angle overhang at walls. Furthermore the DOIM, using
PCA quadrature, has less solid angle overhang effect for
this elliptical ring problem than the DOM-FV-RT usirigy
guadrature. Especially for the DOIM (unstructured), a large
number of angular ordinates is used to reduce the solid angle
overhang effect at walls. These solid angle overhang effects
can be observed in Figs. 12-17.

Generally, the three DOMs give similar results, even
if some discrepancies can be observed, specially with the
incident heat fluxes. If we take the DOM-OCC that has no
oscillation as reference for incident heat fluxes, it is observed
from Figs. 12—17 that the DOIM overestimates at inner walls
and underestimates at outer walls to keep overall energy
balance in respect to the DOM-OCC. The DOM-FV-RT
yields results which are similar to those of the DOM-OCC
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Fig. 14. Nondimensional incident heat flux at inner wall far= e = 1
andt = 1 in the elliptical ring problem.
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Fig. 15. Nondimensional incident heat flux at outer wall fgr= e = 1
andt = 1 in the elliptical ring problem.
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Fig. 16. Nondimensional incident heat flux at inner wall fgr=¢> =1
andt = 10 in the elliptical ring problem.
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Fig. 17. Nondimensional incident heat flux at outer wall fgr=¢> = 1
andr = 10 in the elliptical ring problem.
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Fig. 18. Nondimensional emissive power distribution of medium for
g1 =¢2 =0.3 andr = 0.1 in the elliptical ring problem.

for the inner walls (see Figs. 12, 14 and 16) and somewhat
different for the outer walls (see Figs. 13 and 15).

Let us consider = 1 case in detail. There is excellent
agreement between the three DOMs results for emissive
power distribution from Fig. 10. Furthermore, the DOM-
OCC and DOM-FV-RT results for incident heat fluxes at
inner walls are similar to each other from Fig. 14. However,
from Fig. 15, there is a discrepancy between the two results
at outer walls. This means that the two methods to adjust
overall energy balance by the DOM-OCC and DOM-FV-RT
are different from each other in this case, and it seems that
this difference may be ascribed to the DOM-FV-RT which
has solid angle overhang at walls.

Second, consider the cases that= ¢» = 0.3 and an
optical depthr is varied as 0.1, 1 and 10. Nondimensional
emissive power distributiong* of medium along major and
minor axes are shown in Figs. 18—-20. The results of the three
DOMs generally agree with each other especially#fes 1
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Fig. 19. Nondimensional emissive power distribution of medium for

¢1=ep = 0.3 andr = 1 in the elliptical ring problem. Fig. 21. Nondimensional incident heat flux at inner wall fgr= ¢ = 0.3

andt = 0.1 in the elliptical ring problem.
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Fig. 22. Nondimensional incident heat flux at outer wall §gr= ¢ = 0.3

andr = 0.1 in the elliptical ring problem.
except that the DOIM (unstructured) gives slightly higher
values than the other DOMs. As is for black wall cases,

values of@* along minor axis are larger than those along o o=
major axis. Furthermore, from the figures, it can be verified 0434 T
that @* values for these reflective wall cases are smaller ;]
than those for black wall cases. Nondimensional incident _ 1
heat fluxesp; at walls are given in Figs. 21-26. They do & %'

not show as good agreement as emissive power distributions,& o.40
and some oscillations are observed in the DOM-FV-RT and £ 1
DOIM (structured) results in these reflective wall cases too. ;“’N ]
But they are similar within relative error of 10% with regard ™ 0.3

£,70.3, ¢,=0.3, 7=1

——DOIM (Structured)
—-=-=DOIM (Unstructured)

to the DOM-OCC results. 1 Topowoce
. 0.37
Lastly, the cases that = 1,2 = 0.1 and an optical depth ]
r is varied as 0.1, 1 and 10 are considered. The nondimen- 036+
sional emissive power distributions along major and m_inor o0 02  os  os  os 10
axes are shown in Figs. 27-29. The best agreement is ob- s/s

served atr = 1. At t = 0.1, the DOM-OCC gives slightly
lower values than the other methods, while the DOM-FV-RT Fig. 23. Nondimensional incident heat flux at inner wall fgr= &5 = 0.3
shows that tendency at= 10. In these cases, the values of andr =1 in the elliptical ring problem.



356 H.-M. Koo et al. / International Journal of Thermal Sciences 42 (2003) 343-359

] 0.06
7.4 4
4 4 £=1, £,=0.1, 7=0.1
7.2+ n . : ——— DOIM (Structured)
4 0.08 Along minoraxis | ____ 5o (Unstructured)
-~~~ DOM-OCC
7.0 1 e DOM-FV-RT
g ] 0.04 4
2 68+
2 : i
3 *
o 6.6 — _ — o
= ] £,=0.3, £,=0.3, 7=1 0.03
*
S 6.4 —— DOIM (Structured) J
4 —-=-=DOIM (Unstructured)
6.2 --DOM-OCC 0.02 -
: e DOM-FV-RT
6.0 4 1 Along majoraxis ~°°s =~
T T T y T v T T T T T 1 0.01 T T T T T T T T T T T '
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 06 0.8 1.0

sls X/ Xmax or ylymax
Fig. 27. Nondimensional emissive power distribution of medium for

Fig. 24. Nondimensional incident heat flux at outer wall §gr= e> = 0.3
g1 =1,e0 =0.1 andr = 0.1 in the elliptical ring problem.

andt = 1 in the elliptical ring problem.
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Fig. 30. Nondimensional incident heat flux at inner walldpe= 1, ¢ = 0.1
andr = 0.1 in the elliptical ring problem.
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Fig. 31. Nondimensional incident heat flux at outer wallfpe= 1, e = 0.1
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Fig. 32. Nondimensional incident heat flux at inner walldpe= 1, ¢ = 0.1
andz = 1 in the elliptical ring problem.
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Fig. 33. Nondimensional incident heat flux at outer walldpe= 1, ¢ = 0.1
andr =1 in the elliptical ring problem.
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Fig. 34. Nondimensional incident heat flux at inner walldpe= 1, ¢ = 0.1
andt = 10 in the elliptical ring problem.
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Fig. 35. Nondimensional incident heat flux at outer walldfpe= 1, ¢ = 0.1
andt = 10 in the elliptical ring problem.
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@* along minor axis are larger than those along major axis. the DOM-FV-RT and the DOIM are particularly severe

The inner wall is highly reflective in these cases and consid- when the walls are highly reflecting.
erable decrease ib* is observed from the figures compared
to black wall cases. Nondimensional incident heat flukgs It is expected that these conclusions should help in

at walls are shown in Figs. 30—35. Oscillations are observedimproving the DOM, one of the most promising Radiative

in the DOM-FV-RT and DOIM (structured) results and they Transfer Equation solvers when they are applied to complex

are severe at highly reflective inner wall. As is for all other curved geometries. In particular, a proper attention should be

tested cases, incident heat fluxes at walls do not give as goodgaid to increase the accuracy of the methods for evaluation

agreement as emissive power distributions. However, theyof wall radiation fluxes, in term of absolute values and

are similar within relative error of 10% with regard to the of regular variations along the boundaries (avoidance of

DOM-OCC results except at inner wall with= 0.1. oscillations) when the walls are not parallel to a plane of
coordinates. As further work, tests might be extended to
more complex geometries (for the DOIM and the DOM-FV-

4. Conclusion RT; the DOM-OCC should be first extended to generalised
curvilinear coordinates) and to the case of specular reflecting

Three variations of the DOM have been applied to curved boundaries.

the two-dimensional curved geometries. Results have been

carefully analysed to yield specific performances associated
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